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Abstract

We compare several discretizations of the simple pendulum equation in a series
of numerical experiments. The stress is put on the long-time behaviour. The
chosen numerical schemes are either symplectic maps or integrable (energy-
preserving) maps, or both. Therefore, they preserve qualitative features of
solutions (such as periodicity). We describe characteristic periodic time
dependences of numerical estimates of the period and the amplitude, and
explain them as systematic numerical by-effects produced by any method.
Finally, we propose a new numerical scheme which is a modification of the
discrete gradient method. This modified discrete gradient method preserves
(almost exactly) the period of small oscillations for any time step.

PACS numbers: 45.10.−b, 02.60.Cb, 02.70.−c, 02.70.Bf
Mathematics Subject Classification: 65P10, 65L12, 34K28

1. Introduction

A new but increasingly important direction in numerical analysis is geometric numerical
integration [11, 12, 14, 19]. Numerical methods within this approach are tailored for
specific equations rather than for large general classes of equations. The aim is to preserve
qualitative features, invariants and geometric properties of studied equations, e.g., integrals
of motion, long-time behaviour and sometimes even trajectories (but it is difficult, sometimes
even impossible, to preserve all properties by a single numerical scheme). ‘Although the
apparent desirability of this practice might be obvious at first glance, it nonetheless calls for a
justification’ [13].

In this paper, we perform a series of numerical experiments comparing the performance
of several standard and geometric methods on the example of the simple pendulum equation.
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The equation itself is very well known but its discrete counterparts show many interesting and
unexpected features, for instance, the appearance of chaotic behaviour for large time steps
[7, 29]. We focus our attention on the stability and time step dependence of the period and
the amplitude for several discretizations of the simple pendulum (assuming that the time step
is sufficiently small). We describe and explain small periodic oscillations of the period and of
the amplitude around their average values.

We confine our studies either to symplectic maps or to energy-preserving maps. It is well
known that symplectic integrators are very stable as far as the conservation of the energy is
concerned. Since the beginning of 1990s they have been successfully used in the long-time
integration of the solar system [27–29]; see also [4, 9]. The reason is that using any symplectic
scheme of nth order the error of the Hamiltonian for an exponentially long time is of the order
O(εn), where ε is the constant step of the integration [3, 11, 18]. Therefore, in the studies of
the long-time behaviour, symplectic algorithms have a great advantage at the very beginning.
Fortunately, the class of symplectic integrators includes such well-known and relatively simple
numerical schemes as the standard leap-frog method and the implicit midpoint rule. In this
paper, we compare these classical methods with new geometric methods which preserve the
energy integral.

We also propose a new discretization (a modification of the discrete gradient method)
which is almost exact for small oscillations (even for large time steps) and keeps outstanding
properties of the discrete gradient method (e.g., its precision in describing motions in the
neighbourhood of the separatrix).

2. Symplectic discretizations of Newton equations

We consider scalar autonomous Newton equations:

ϕ̈ = f (ϕ), (1)

which can be written as the following first-order system:

ϕ̇ = p, ṗ = f (ϕ). (2)

The equations are integrable for any function f = f (ϕ) (in this case by integrability we mean
the existence of the integral of motion; compare [26]). The energy conservation law reads

1

2
ϕ̇2 + V (ϕ) = E, f (ϕ) = −dV (ϕ)

dϕ
, (3)

where E = const. The Hamiltonian is given by

H(p, q) = p2

2
+ V (q). (4)

As an example to test quantitatively various numerical methods we will use the simple
pendulum equation

ϕ̈ = −k sin ϕ. (5)

In this case, the energy conservation law has the form
1
2p2 − k cos ϕ = E. (6)

The constant k is not important. It can be eliminated by a change of the variable t. In the
sequel (in any numerical computations) we assume k = 1.

By the discretization of (1) we mean an ε-family of difference equations (of the second
order) which in the continuum limit ε → 0 yields (1). The initial conditions should be
discretized as well, i.e., we have to map ϕ(0) �→ ϕ0, ϕ̇(0) �→ p0.
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It is convenient to discretize (2) which automatically gives the discretization of p. Thus
we have an ε-dependent map, (ϕn, pn) �→ (ϕn+1, pn+1). This map is called symplectic if for
any n

dϕn+1 ∧ dpn+1 = dϕn ∧ dpn. (7)

The following lemmas give a convenient characterization of symplectic maps, and we will
apply them in the following sections.

Lemma 1. The map (ϕn, pn) �→ (ϕn+1, pn+1), implicitly defined by

ϕn+1 − ϕn = P(pn, pn+1, ε), pn+1 − pn = R(ϕn, ϕn+1, ε), (8)

where P and R are differentiable functions, is symplectic if and only if

∂P

∂pn

∂R

∂ϕn

= ∂P

∂pn+1

∂R

∂ϕn+1
�= 1. (9)

The proof is straightforward. Differentiating (8) we get

dϕn+1 − dϕn = P,1 dpn + P,2 dpn+1,

dpn+1 − dpn = R,1 dϕn + R,2 dϕn+1,

(where the comma denotes the partial differentiation). Then

dϕn+1 = 1 + P,2 R,1

1 − P,2 R,2
dϕn +

P,1 +P,2

1 − P,2 R,2
dpn,

dpn+1 = R,1 +R,2

1 − P,2 R,2
dϕn +

1 + P,1 R,2

1 − P,2 R,2
dpn,

provided that P,2 R,2 �= 1 (this condition means that the map defined by P,R is non-
degenerate). Therefore

dϕn+1 ∧ dpn+1 = 1 − P,1 R,1

1 − P,2 R,2
dϕn ∧ dpn.

Hence the map is symplectic if P,1 R,1 = P,2 R,2 �= 1 which ends the proof.

Lemma 2. The map (ϕn, pn) �→ (ϕn+1, pn+1), defined by

ϕn+1 − A(ϕn, ε) + ϕn−1 = 0, pn = μ0(ε)ϕn+1 + B(ϕn, ε), (10)

is symplectic for any differentiable functions A,B.

In order to prove lemma 2 we compute

dpn+1 = μ0 dϕn+2 + T B ′ dϕn+1 = μ0T A′ dϕn+1 − μ0 dϕn + T B ′ dϕn+1,

where the prime denotes the differentiation, and T denotes the shift, i.e., T A(ϕn) = A(ϕn+1).
Therefore

dϕn+1 ∧ dpn+1 = −μ0 dϕn+1 ∧ dϕn.

On the other hand, dϕn ∧ dpn = μ0 dϕn ∧ dϕn+1, which ends the proof.

3. Non-integrable symplectic discretizations

In this section, we present some well-known discretizations which preserve the symplectic
structure of the Newton equations (compare [11], pp 189–90) but have no integrals of motion.
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3.1. Standard discretization

The standard discretization of the simple pendulum equation

ϕn+1 − 2ϕn + ϕn−1

ε2
= −k sin ϕn (11)

is non-integrable [26]. This discretization can be obtained by the application of either the
leap-frog (Störmer–Verlet) scheme or one of the symplectic Euler methods. It is interesting
that we get the same discrete equation (11) but a different dependence of pn on ϕn, ϕn+1

(compare (16), (22)):

pn = ϕn+1 − ϕn

ε
+ ckε sin ϕn = ϕn+1 − ϕn−1

2ε
+

(
c − 1

2

)
kε sin ϕn, (12)

where c = 0, 1
2 , 1. By virtue of lemma 2 standard discretizations are symplectic (for any c).

3.2. The Störmer–Verlet (leap-frog) scheme

The numerical integration scheme⎧⎪⎪⎨
⎪⎪⎩

pn+ 1
2

= pn + 1
2εf (ϕn),

ϕn+1 = ϕn + εpn+ 1
2
,

pn+1 = pn+ 1
2

+ 1
2εf (ϕn+1),

(13)

is known as the Störmer–Verlet (or leap-frog) method (compare, e.g., [11]). Eliminating pn+ 1
2
,

we can easily formulate the Störmer–Verlet as a one-step method:

ϕn+1 = ϕn + εpn + 1
2ε2f (ϕn),

pn+1 = pn + 1
2ε

(
f (ϕn) + f

(
ϕn + εpn + 1

2ε2f (ϕn)
))

.
(14)

We can also formulate this method as

ϕn+1 − 2ϕn + ϕn−1

ε2
= f (ϕn), (15)

pn = ϕn+1 − ϕn

ε
− ε

2
f (ϕn). (16)

In the simple pendulum case (f (ϕ) = −k sin ϕ) we recognize in equations (15), (16) the
standard discretization (11), (12) with c = 1/2.

3.3. Symplectic Euler methods

The system (2) belongs to the class of ‘partitioned systems’ which have the form

ϕ̇ = g(ϕ, p), ṗ = h(ϕ, p), (17)

where g, h are given functions of two variables. We can discretize such systems in one of the
following two ways:

ϕn+1 = ϕn + εg(ϕn, pn+1), pn+1 = pn + εh(ϕn, pn+1), (18)

ϕn+1 = ϕn + εg(ϕn+1, pn), pn+1 = pn + εh(ϕn+1, pn). (19)

Both these discretizations are called either symplectic Euler methods [11] or symplectic
splitting methods [21]. In our case (see (2)) we have, respectively,

4
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ϕn+1 = ϕn + εpn+1, pn+1 = pn + εf (ϕn), (20)

ϕn+1 = ϕn + εpn, pn+1 = pn + εf (ϕn+1). (21)

Finally, both (20) and (21) yield (15), but instead of (16) we have

pn = ϕn+1 − ϕn

ε
− εf (ϕn) or pn = ϕn+1 − ϕn

ε
, (22)

i.e., in the simple pendulum case we get (12) with c = 1 and c = 0, respectively.

3.4. Implicit midpoint rule

Any first-order equation, ẋ = F(x), can be discretized using the implicit midpoint rule (which
coincides with the implicit one-stage Gauss–Legendre–Runge–Kutta method; compare [11]).
The first derivative is replaced by the difference quotient and the right-hand side is evaluated
at the midpoint 1

2 (xn + xn+1). In the case of the simplest Hamiltonian systems, given by (2),
we have

ϕk+1 = ϕk +
1

2
ε(pk + pk+1), pk+1 = pk + εf

(ϕk + ϕk+1

2

)
. (23)

In the special case of the simple pendulum, we get

ϕk+1 − 2ϕk + ϕk−1

ε2
= −1

2
k

(
sin

(ϕk+1 + ϕk

2

)
+ sin

(ϕk + ϕk−1

2

))
,

pk = ϕk+1 − ϕk

ε
+

1

2
εk sin

ϕk+1 + ϕk

2
.

(24)

The implicit midpoint rule has quite good properties: this is a symplectic, time-reversible
method of order 2. The symplecticity follows directly from lemma 1. Indeed, (23) implies
P,1 = P,2 and R,1 = R,2 .

4. Projection methods

Non-integrable discretizations can be modified so as to preserve the energy integral ‘by force’,
i.e., projecting the result of every step on the constant energy manifold. In principle, any
one-step method can be converted into the corresponding projection method. In this paper, we
apply these procedures to the Störmer–Verlet (leap-frog) method. Therefore, referring to the
‘standard projection’ and ‘symmetric projection’ we always mean the standard (or symmetric)
projection applied to the leap-frog scheme.

4.1. The standard projection method

There are given a first-order equation ẋ = F(x), x ∈ R
2, any one-step numerical method

xn+1 = �ε(xn) (a discretization of the ODE) and a constraint g(x) = 0 that we would
like to preserve. The standard projection consists in computing x̃n+1 := �ε(xn), and then
orthogonally projecting x̃n+1 on the manifold g(x) = 0; see [11]. This projection, denoted by
xn+1, yields the next step: xn → xn+1. In other words, we define

xn+1 = x̃n+1 + λ∇g(x̃n+1) (25)

where λ is such that g(xn+1) = 0.
Applying this approach to the simple pendulum (5) it is convenient to define x as

x =
(

ϕ,
ϕ̇

ω

)
≡ (ϕ, p), (26)

5
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where ω = √
k. The above definition of p yields dimensionless components of x. If k = 1

(which is assumed throughout this paper), then this definition of p coincides with the previous
one; see (2). The constraint g(x) = 0 is given by (6), i.e.,

g(x) = 1
2p2 − cos ϕ − h, (27)

where h = E/ω2. Equation (25) becomes

ϕn+1 = ϕ̃n+1 + λ sin ϕ̃n+1, pn+1 = (1 + λ)p̃n+1, (28)

and λ is computed from
1
2 (1 + λ)2p̃2

n+1 − cos(ϕ̃n + λ sin ϕ̃n+1) = h. (29)

In order to solve (29) we use Newton’s iteration λj+1 = λj + �λj , where

�λj = −
1
2 (1 + λj )

2p̃2
n+1 − cos(ϕ̃n + λj sin ϕ̃n+1) − h

p̃2
n+1 + sin2 ϕ̃n+1

, (30)

and it is sufficient and convenient to choose λ0 = 0. The approximated solution to (29) is
given by λ = limj→∞ λj .

4.2. The symmetric projection method

A one-step algorithm xn+1 = �ε(xn) is called symmetric (or time-reversible) if �−ε = �−1
ε .

Equations of the classical mechanics are time reversible; therefore, the preservation of this
property is convenient and is expected to improve numerical results. The symplectic Euler
methods are not time reversible while the Störmer–Verlet method and implicit midpoint rule
are symmetric. The symmetry can be easily noted in the form (13) of the leap-frog method.

The symmetric projection method preserves the time reversibility. The method is applied
under similar assumptions as standard projection (additionally we demand the time reversibility
of �ε) and consists of the following steps [2, 10]:

x̂n = xn + λ∇g(xn), x̃n+1 = �ε(x̂n), xn+1 = x̃n+1 + λ∇g(x̃n+1), (31)

where we assume g(xn) = 0 and compute the parameter λ from the condition g(xn+1) = 0.

5. Integrable discretizations

Throughout this paper by integrability we mean the existence of an integral of motion. The
Newton equation (1) has the energy integral (3). Its discretization is called integrable when
it has an integral of motion as well. In the continuum limit this integral becomes the energy
integral, so it may be treated as a discrete analogue of the energy.

5.1. Standard-like discretizations

Standard-like discretizations are defined by [26]

ϕn+1 = ϕn + εpn+1, pn+1 = pn + εF (ϕn, ε), (32)

where F has to satisfy F(ϕn, 0) = f (ϕn). For a given f there exist infinitely many functions
F satisfying this conditions. All of them are symplectic, which can be easily seen applying
lemma 1 with P,1 = R,2 = 0. Similarly as in section 3 we obtain from (32)

ϕn+1 − 2ϕn + ϕn−1 = ε2F(ϕn, ε),

pn = ϕn+1 − ϕn

ε
− εF (ϕn, ε) = ϕn − ϕn−1

ε
.

(33)

6
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We are interested in integrable cases, i.e., in discretizations preserving the energy integral.
Suris found that two standard-like discretizations of the simple pendulum are integrable
[25, 26]:

ϕn+1 − 2ϕn + ϕn−1 = −2 arctan

(
kε2 sin ϕn

2 + kε2 cos ϕn

)
, (34)

ϕn+1 − 2ϕn + ϕn−1 = −4 arctan

(
kε2 sin ϕn

4 + kε2 cos ϕn

)
. (35)

Equation (34), referred to as the Suris1 scheme, has the integral of motion given by

E1 = 1

2

(
2 sin ϕn+1−ϕn

2

ε

)2

− 1

2
k(cos ϕn + cos ϕn+1), (36)

or, in terms of ϕn and pn,

E1 = 1 − cos εpn

ε2
− 1

2
k(cos ϕn + cos(ϕn − εpn)). (37)

Equation (35), referred to as the Suris2 scheme, has the following integral of motion:

E2 = 1

2

(
4 sin ϕn+1−ϕn

4

ε

)2

− k cos
ϕn + ϕn+1

2
, (38)

which can be expressed in terms of ϕn and pn as follows:

E2 = 4

ε2

(
1 − cos

εpn

2

)
− k cos

(
ϕn − εpn

2

)
. (39)

One can verify the preservation of these integrals by direct computation.

5.2. The discrete gradient method

The discrete gradient method [21–23] is a general and very powerful method to generate
numerical schemes preserving any number of integrals of motion and some other properties
[20]. However, this method, in general, is not symplectic. In this paper, we need to preserve
one integral (the energy) and the system is Hamiltonian, compare (4),

ϕ̇ = ∂H

∂p
, ṗ = −∂H

∂ϕ
. (40)

In such a case, the discrete gradient method reduces to the following simple scheme. Left-
hand sides of formulae (40) are discretized in the simplest way (difference quotients) while
the right-hand sides are replaced by the so-called discrete (or average) gradients:

ϕn+1 − ϕn

ε
= �H

�p
,

pn+1 − pn

ε
= −�H

�ϕ
. (41)

The discrete gradient ∇̄H ≡ (
�H
�ϕ

, �H
�p

)
of a differentiable function H(ϕ, p) by definition (see

[21]) satisfies the condition

H(ϕn+1, pn+1) − H(ϕn, pn) = �H

�ϕ
(ϕn+1 − ϕn) +

�H

�p
(pn+1 − pn). (42)

The explicit form of ∇̄H is, in general, not unique. One of the possibilities is the coordinate
increment discrete gradient [15],

�H

�ϕ
= H(ϕn+1, pn) − H(ϕn, pn)

ϕn+1 − ϕn

,
�H

�p
= H(ϕn+1, pn+1) − H(ϕn+1, pn)

pn+1 − pn

. (43)

7



J. Phys. A: Math. Theor. 42 (2009) 105204 J L Cieśliński and B Ratkiewicz

Other possibilities are, for instance, mean value discrete gradient [21] and midpoint discrete
gradient [8]. All these definitions coincide in the case H(ϕ, p) = T (p) + V (ϕ). In such a
case ∇̄H = (∇̄V, ∇̄T ), where

∇̄T = T (pn+1) − T (pn)

pn+1 − pn

, ∇̄V = V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

. (44)

Thus we have got the discrete gradient scheme:⎧⎪⎪⎨
⎪⎪⎩

pn+1 + pn

2
= ϕn+1 − ϕn

ε
,

pn+1 − pn

ε
= −V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

.

(45)

This numerical scheme can also be obtained as a special case of the modified midpoint rule
[16]. The system (45) can be rewritten as the following second-order equation for ϕn plus the
defining equation for pn:

ϕn+1 − 2ϕn + ϕn−1

ε2
= −1

2

(
V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

+
V (ϕn) − V (ϕn−1)

ϕn − ϕn−1

)

pn = ϕn+1 − ϕn

ε
+

1

2
ε

(
V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

)
.

(46)

Substituting V (ϕ) = −k cos ϕ we get the simple pendulum case. Multiplying both
equations (45) side by side, we easily prove that the system (46) has the first integral

E = 1
2p2

n + V (ϕn) (47)

which exactly coincides with the Hamiltonian (4) evaluated at ϕn, pn. Note that the integrals
of motion (37), (39) coincide with (4) (where V (ϕ) = −k cos ϕ) only approximately in the
limit ε → 0.

6. A correction which preserves the period of small oscillations

The classical harmonic oscillator equation ϕ̈ + ω2ϕ = 0 admits the exact discretization ([6],
compare also [1, 24]), i.e., a discretization such that the solution ϕ(t) evaluated at nε equals
ϕn (for any ε and any n):

ϕn+1 − 2ϕn cos εω + ϕn−1 = 0, pn = ω

sin ωε
(ϕn+1 − ϕn cos ωε). (48)

The energy is also exactly preserved, i.e.,

E = 1
2p2

n + 1
2ω2ϕ2

n (49)

does not depend on n (which can easily be checked by direct calculation). The existence of the
exact discretization of the harmonic oscillator equation has been recently used to discretize
the Kepler problem (preserving all integrals of motion and trajectories) [5].

We consider the class of Newton equations (1). Let us confine ourselves to equations
which have a stable equilibrium at ϕ = 0, i.e., f ′(0) < 0. Then V = V (ϕ) has a local
minimum at ϕ = 0, i.e., V ′(0) = f (0) = 0. We denote

ω0 =
√

V ′′(0). (50)

Thus

V (ϕ) = V0 + 1
2ω2

0ϕ
2 + · · · , (51)

8
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and small oscillations around the equilibrium can be approximated by the classical harmonic
oscillator equation with ω = ω0.

Do exist discretizations which in the limit ϕn ≈ 0 (ε is fixed) become exact? Known
discretizations, including those presented in this paper, do not have this property. Fortunately,
we found such a discretization by modifying the discrete gradient method. It is sufficient to
replace ε by some function δ = δ(ε) in formulae (45). The form of this function will be
obtained by the comparison with the harmonic oscillator equation (in the limit ϕ ≈ 0).

We linearize equations (46) (with ε replaced by δ) around ϕn = 0 (i.e., we take into
account (51)). Thus we get

ϕn+1 − 2ϕn + ϕn−1

δ2
= −ω2

0

4
(ϕn+1 + 2ϕn + ϕn−1) ,

pn = ϕn+1 − ϕn

δ
+

1

4
ω2

0δ(ϕn+1 + ϕn),

(52)

which is equivalent to

ϕn+1 − 2

(
4 − ω2

0δ
2

4 + ω2
0δ

2

)
ϕn + ϕn−1 = 0,

pn = 4 + ω2
0δ

2

4δ

(
ϕn+1 −

(
4 − ω2

0δ
2

4 + ω2
0δ

2

)
ϕn

)
.

(53)

We compare (48) with (53). Both systems coincide if and only if

4 − ω2
0δ

2

4 + ω2
0δ

2
= cos εω,

4 + ω2
0δ

2

4δ
= ω

sin εω
. (54)

Solving the system (54) we get

ω = ω0, δ = 2

ω0
tan

(εω0

2

)
. (55)

Therefore, we propose the following new discretization of the Newton equations (1), (3)
(modified discrete gradient scheme):

ϕn+1 − 2ϕn + ϕn−1

δ2
= −1

2

(
V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

+
V (ϕn) − V (ϕn−1)

ϕn − ϕn−1

)

pn = ϕn+1 − ϕn

δ
+

1

2
δ

(
V (ϕn+1) − V (ϕn)

ϕn+1 − ϕn

)
,

(56)

where δ is defined by (55) (and ω0 is given by (50)). This discretization becomes exact for
small oscillations for any fixed ε. It means that for ϕn ≈ 0 the period and the amplitude of
the approximated solution should be very close to the exact values (even for large ε!). In the
following sections we will verify this point experimentally.

7. Numerical experiments

We performed a number of numerical experiments applying the numerical schemes presented
above. The initial data were parametrized by the velocity p0 while the initial position was
always the same: ϕ0 = 0. In the continuous case (5) we have three possibilities: oscillating
motion (|p0| < 2), rotating motion (|p0| > 2) and the motion along the separatrix (p0 = ±2),
from ϕ = 0 to (asymptotically) ϕ = ±π . The (theoretical) amplitude Ath for the oscillating

9
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motions can easily be computed from the energy conservation law (6) (where k = 1, i.e.,
1
2p2

0 − 1 = −cos Ath):

2 sin
Ath

2
= p0. (57)

In particular, we performed many numerical computations for the following initial data:

• p0 = 0.1, then Ath ≈ 0.031 8443π ≈ 0.100 0417 (small amplitude)
• p0 = 1.8, then Ath ≈ 0.712 867π ≈ 2.239 539 (very large amplitude).

To estimate the actual amplitude of a given discrete simulation we apply the following
procedure: if ϕm is a local maximum of the discrete trajectory (i.e., ϕm > ϕm−1 and
ϕm > ϕm+1), then we estimate the maximum of the approximated function by the maximum
of the parabola best fitted to the following five points: ϕm−2, ϕm−1, ϕm, ϕm+1, ϕm+2. The
analogical procedure is done also at local minima (we take the absolute value of the obtained
minimum). Thus we obtain a sequence of the amplitudes, AN . The index N is common for all
extrema (maxima and minima), and on some figures we denote it by N1/2 (the number of half
periods) to discern it from N (the number of periods).

Every numerical scheme used in the present paper yields a discrete trajectory with a rather
stable amplitude. It is not constant but oscillates in a regular way around an average value:

AN = A(1 + αN), (58)

where both the average amplitude A and relative (dimensionless) oscillations αN can depend
on the time step ε and on the initial velocity p0, i.e., A = A(p0, ε) and αN = αN(p0, ε). Of
course, both A and αN differ for different numerical schemes.

In a similar way, we estimated the period of discrete motions. The exact periodicity
(ϕk+n = ϕk for some k, n) is a rare phenomenon and, of course, we did not observe it. To
define the approximate period we fit a continuous curve to the discrete graph, estimate zeros
of this function, and compute the distance between the neighbouring zeros.

Suppose that ϕmϕm+1 < 0 for some m. It means that one of the zeros, say zN , lays
between ϕm and ϕm+1. We estimate it by zero of the interpolating cubic polynomial based on
the points ϕm−1, ϕm, ϕm+1, ϕm+2 (another natural, but less accurate, possibility could be a line
joining ϕm and ϕm+1). Then, denoting subsequent estimated zeros by zN (N = 1, 2, 3, . . .)

and z0 = ϕ0 = 0, we define

TN = z2N − z2N−2, (59)

which we take as an estimate of the period.
Our numerical experiments have shown that TN is not exactly constant but oscillates with

a relatively small amplitude. The average value of TN is constant with high accuracy (see the
following section). Therefore we have

TN = T (1 + τN), (60)

where both the average period T and relative (dimensionless) oscillations τN can depend on the
time step ε and on the initial velocity p0, i.e., T = T (p0, ε) and τN = τN(p0, ε). Moreover,
T and τN essentially depend on the discretization (numerical scheme).

The amplitude of small oscillations is defined in a natural way:

τ(ε, p0) := max
N

|τN(ε, p0)|, α(ε, p0) := max
N

|αN(ε, p0). (61)

Fortunately, |τN | and |αN | oscillate (as functions of N), with small amplitudes, in a very regular
way. Thus we can estimate τ(ε, p0) and α(ε, p0) considering a series of, say, 40 local extrema
of τN and αN , and taking an average value.

10
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8. Periodicity and stability

Discrete trajectories generated by symplectic or integrable schemes considered in our paper
are stable for ε which are not too large (for very large ε one can observe chaotic behaviour
[7, 29]). We confine ourselves to sufficiently small ε, i.e. ε � 0.5, but sometimes (for
p0 < 1.5) we can take even ε ≈ 1. In this region the motion is very stable, and both the
average period T and the average amplitude A are well defined. The average amplitude is
computed simply as

Aavg(N,M) = 1

M

M−1∑
j=0

|AN+j |, (62)

where we usually assume M = 50. The definition of the average period is similar. In many
cases we use the formula

Tavg(N,M) = 1

M
(zN+2M − zN), (63)

where the dependence (very essential!) on ε and p0 is omitted for the sake of brevity. Note
that TN ≡ Tavg(2N − 2, 1). Computing Tavg it is necessary to choose M arbitrarily, we usually
take M = 20. Sometimes we denote N ≡ N0 to point out that the average is taken over
indices greater than N0.

Considering very long discrete evolutions (many thousands of periods), we use another
definition of the average period. Namely, we average Tavg(N,M) over some range of the
parameter M (K < M � L):

T̄avg(N,K,L) = 1

L − K

L∑
M=K+1

Tavg(N,M). (64)

Usually we assume K = 100, L = 200.
All discretizations considered in the present paper are characterized by very high stability

of the period and the amplitude. One can hardly notice any dependence of Tavg and Aavg on
N, even when testing very large N (such as 103, 105 or 106), and T̄avg is even more stable.

As a typical example we present long-time behaviour of the Suris1 scheme; see figures 1
and 2, where we used the definition (63) with M = 20. The time dependence of the average
period yields an interesting periodic pattern (one can discern distinct ‘discrete curves’). The
origin of such patterns is explained in section 9. An interesting phenomenon is associated
with changing M. The patterns for different M usually are very similar but the amplitude of
oscillations becomes smaller and smaller for larger M (compare figure 3, where M = 1, with
figure 2, where M = 20).

Table 1 shows how stable are the periods of the oscillations. Maximal TN is defined as
maxJ+100<N�J+200 TN for either J = 0 or J = 1.8 × 106. Minimal values and the average are
taken over the same range of values. The standard error of the average is about 5.7 × 10−8

(the maximal error is about 10−7). Therefore, the average period is practically constant for all
studied discretizations. The Suris1 scheme is exceptionally stable. In this case, any variations
of the period are well within the error limits, and we did not observe any dependence of
Tavg(N,M) on N. Taking into account the observed stability of the period, throughout this
paper we identify the average period with T ≡ Tavg(0, 20).

The observed stability of the period (for symplectic and integrable discretizations) is in
sharp contrast to the results given by standard (non-symplectic and non-integrable) numerical
methods. For instance, the most popular (explicit) fourth-order Runge–Kutta scheme yields
the period noticeably decreasing in time (see figure 4). For small N0 we get reasonably good
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Figure 1. Tavg(N0, 20) for the Suris1 scheme (N0 < 3100), ε = 0.2, p0 = 1.95, Tth =
11.657 585 28, T = 11.888 840 05.

Figure 2. Tavg(N0, 20) for the Suris1 scheme (for very large N0), ε = 0.2, p0 = 1.95, Tth =
11.657 585 28, T = 11.888 840 05.

estimation of the period (interpolating the discrete curve we get T = 11.646 02 for N0 = 0,
which is quite close to the theoretical value Tth = 11.657 585 28). Among our discretizations
only both gradient schemes produce comparable (even a little bit better) results, namely
the discrete gradient scheme yields T = 11.646 98. However, for larger N0 the Runge–Kutta
method yields worse and worse estimation of the period (in fact, this is an exponential decrease,
although very slow) while both gradient methods remain stable for very long time; compare
table 1. In this particular case (p0 = 1.95, ε = 0.2), the error produced by the Runge–Kutta
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Figure 3. TN for the Suris1 scheme (for very large N), ε = 0.2, p0 = 1.95, Tth =
11.657 585 28, T = 11.888 840 05.

Figure 4. Tavg(N0, 20) for a fourth-order Runge-Kutta scheme, ε = 0.2, p0 = 1.95, Tth =
11.657 585 28.

method becomes greater than the errors of all methods considered in this paper beginning
from N0 ≈ 2000.

Numerical experiments show that the oscillations of the period and the amplitude are very
small. For ε → 0 we have τ(ε, p0) → 0, up to the round-off error. The largest values of
τ(ε, p0), obtained for both projection methods (for large ε and small p0), are of order 0.2. All
other discretizations yield oscillations smaller by one or two orders of magnitude (even for
large ε). A typical picture is given in figure 5 representing τ(ε, p0) for p0 = 1.8.
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Figure 5. Relative amplitude of the period oscillations (τ ) for p0 = 1.8. The vertical axis is marked
with a logarithmic scale. Black circles: symmetric projection, white circles: standard projection,
black squares: Suris2 (Suris1 and leap-frog yield almost the same values), black triangles: implicit
midpoint, black diamonds: modified discrete gradient, white diamonds: discrete gradient (the last
three methods yields similar values, especially for 0.1 < ε < 0.3).

Table 1. Stability of the period. Minimal, maximal and average values of TN for p0 = 1.95, ε =
0.2 (Tth = 11.657 585 28).

Discrete
Leap-frog Suris1 gradient

Maximal TN N < 100 11.931 660 41 11.888 850 08 11.646 985 00
N ≈ 1.8 × 106 11.931 660 40 11.888 850 08 11.646 985 40

Minimal TN N < 100 11.931 641 45 11.888 830 61 11.646 971 57
N ≈ 1.8 × 106 11.931 641 40 11.888 830 61 11.646 971 90

Average: N = 0 11.931 651 74 11.888 840 05 11.646 977 32
T̄avg(N, 100, 200) N = 1.8 × 106 11.931 651 62 11.888 840 01 11.646 977 64

9. Why do the period and the amplitude oscillate in a very regular way?

In a large range of parameters, the oscillations τN are very regular and their amplitude is
greater than numerical errors by several orders of magnitude. This phenomenon turns out to
be mainly caused by systematic numerical by-effects.

Our explanation is associated with the above procedure of estimating zeros. In general,
the period T ≡ Tavg and ε is incommensurable. Therefore, the relative position of zN between
ϕm and ϕm+1 depends on N. We conjecture that the periodic phenomena one observes at
figures 6–11 are associated with the properties of the real number T/ε, namely, with the
approximation of T/ε and T/(2ε) by rational numbers.

We begin with a simple definitions. Given T , ε ∈ R (T > ε > 0) and K ∈ N we define

μK := KT

ε
− MK, νK := KT

2ε
− LK, (65)
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Figure 6. TN for the leap-frog scheme, ε = 0.05, p0 = 1.8, T = 9.125 414 5545.

Figure 7. AN for the leap-frog scheme, ε = 0.05, p0 = 1.8, T = 9.125 414 5545.

such that −0.5 < μK � 0.5,−0.5 < νK � 0.5 and MK,LK ∈ N. In other words, for a given
K we take MK such that MK/K is the best rational approximation (with a given denominator K)
of the real number T/ε, and LK/K is the best rational approximation (with the denominator K)
of T/(2ε). For given T , ε,K formulae (65) define uniquely μK, νK,MK,LK . The following
lemma can be derived directly from the above definitions.

Lemma 3. Suppose that T > ε > 0 are given:

(i) If |μK + μJ | < 0.5, then MK+J = MK + MJ and μK+J = μK + μJ .
(ii) If |νK + νJ | < 0.5, then LK+J = LK + LJ and νK+J = νK + νJ .

(iii) If |νK | < 0.25, then MK = 2LK and μK = 2νK .
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Figure 8. TN for the leap-frog scheme, ε = 0.1, p0 = 0.05, T = 6.281 550 4224.

Figure 9. AN for the leap-frog scheme, ε = 0.1, p0 = 0.05, T = 6.281 550 4224.

(iv) If K is even, then MK/2 = LK and μK/2 = νK .

Corollary 1. If νK ≈ 0, then μK ≈ 0 and, for K even, also μK/2 ≈ 0.

If μK ≈ 0, then the configuration of zN, ϕm, ϕm+1 practically repeats after every K periods.
Therefore, it is natural to expect some periodic recurrences with the period KT . In particular,
τN+K ≈ τN for any N.

To obtain a ‘good’ approximation we usually demand at least μK < 0.01. Sometimes,
especially for small K (e.g., K � 5), interesting effects can be observed also for larger μK

(but, anyway, μK < 0.1): the graph of the function N → TN apparently splits into K ‘discrete
curves’ (TN and TM belong to the same curve if N = M (mod K)).

16



J. Phys. A: Math. Theor. 42 (2009) 105204 J L Cieśliński and B Ratkiewicz

Figure 10. TN for the Suris1 scheme, ε = 0.1, p0 = 0.05, T = 6.297 237 955.

Figure 11. AN for the Suris1 scheme, ε = 0.1, p0 = 0.05, T = 6.297 237 955.

Similar considerations can be made for the oscillations αN of the amplitude. In this case
the period is T/2, and ‘good’ approximations correspond to νK ≈ 0.

Example 1 (leap-frog scheme, ε = 0.05, p0 = 1.8, T ≈ 9.125 4146). We compute
T/ε ≈ 182.508 291 and easily check that μ2 ≈ 0.017, μ59 ≈ −0.011, μ61 ≈ 0.0058, μ120 ≈
−0.0051, μ181 ≈ 0.000 67. Figure 6 confirms that the characteristic ‘time scales’ responsible
for the pattern of the oscillations are 2, 120 and 181 indeed.

The period 2 corresponds to oscillations between two sinusoid-like curves. Namely, TN

belong to the first ‘sinusoid’ for N odd, and to second ‘sinusoid’ for N even. Both discrete
curves are periodic with the period 120. Actually, the whole picture seems to have the
translational symmetry with the period 60. The difference between TN+60 and TN is quite large
(in this sense 60 is not a period, indeed); however, TN lays between TN+59 and TN+61.
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The next period, 181, is more difficult to be noticed and corresponds to more subtle effects,
such as the configuration of points near intersections of both ‘sinusoids’ which approximately
repeats every three ‘sinusoid’ half periods.

Similarly, we compute ν4 ≈ 0.017, ν59 ≈ −0.0054, ν181 ≈ 0.000 34 and ν240 ≈ −0.0051.
In figure 7, we recognize four discrete curves, periodic with the period 240. The whole picture
has the period 60 but looking closely on some details (e.g., at peaks or at intersections) we can
also notice another periodicity with the period 181.

Finally, we point out that all equalities suggested by lemma 3 hold (e.g., μ61 =
μ2 + μ59, ν240 = ν59 + ν181, μ59 = 2ν59, μ4 = ν2, etc).

Example 2 (leap-frog scheme, ε = 0.1, p0 = 0.05, T ≈ 6.281 550 42). T/ε ≈ 62.815 504
and we check that μ5 = 0.078, μ11 = −0.029, μ27 = 0.019, μ38 = −0.011, μ65 =
0.0078, μ103 = −0.0031. Figure 8 does not look so regularly as figure 6. Note that μK

are now relatively large; the first μK smaller than 0.01 has the index K = 65 and the next one
is K = 103. However, a closer inspection reveals similar features in both figures. We have
five sinusoid-like curves (periodic with the period 65). The distance between them is 13 but
the difference between TN+13 and TN is large. Note that the period 103 ≈ 8 × 13, so points of
only every eighth ‘sinusoid’ practically coincide.

The other periods (K = 11, 27, 38) can be derived from 103 and 65, namely:
38 = 103 − 65, 27 = 65 − 38, 11 = 38 − 27. They can be noticed in figure 8 as
well. For instance, the lowest points (TN between 6.281 550 37 and 6.281 550 38) have
N = 6, 17, 22, 33, 44, 49, 60, 71, 82, 87, 98; the distances between them are given by
�N = 11, 5, 11, 11, 5, 11, 11, 11, 5, 11 (note that 11 + 11 + 5 = 27).

To explain regularities in figure 9 we compute ν5 = 0.039, ν22 = −0.029, ν27 =
0.0093, ν49 = −0.020, ν76 = −0.011, ν103 = −0.0015, ν130 = 0.0078 and also ν645 =
0.000 10. In this case the structure is also quite complicated because we have several
candidates for periods. Some of them admit a clear interpretation. Joining every fifth point we
get five sinusoidal curves with the period 130. Thus the distance between neighbouring
‘sinusoids’ is 26 which is very close to the period 27. The subsequent minima are at
N = 3, 25, 52, 79, 106, 128, 155, 182, 209, therefore �N = 22, 27, 27, 27, 22, 27, 27, 27
(note that |ν22| is also relatively small). Looking at configurations of points near every
minimum we can notice a distinct periodicity with the period 103.

Example 3 (Suris1 scheme, ε = 0.1, p0 = 0.05, T ≈ 6.297 237 95). In this case the structure
of figure 10 is extremaly simple (a single discrete curve). It can be explained by the non-
existence of any ‘small’ periods. The smallest one, distinctly seen in figure 10, is 36. Namely,
μ36 = 0.0057, μ145 = 0.0050, μ181 = 0.000 69. The period 181 is even more exact than
the period 36 (μ181 is much smaller than μ36). Therefore, after every five basic periods
(181 ≈ 5 × 36) the periodicity improves.

Figure 11 consists of two intersecting discrete curves (periodic with the period 72),
because ν2 = −0.028 is relatively small and ν72 = 0.0057. Actually the important point
is that ν3 = 0.46 is much greater than |ν2|. Note that μ2 = −0.055 is also not very large
but μ3 = −0.083 is of the same order. The whole structure has the period 36 but (similarly
as in example 1) the difference between AN+36 and AN is quite large; AN is close to AN+35

and AN+37 (ν35 = 0.017, ν37 = −0.011). Moreover, we have the period 181, quite accurate
(ν181 = 0.000 34). This periodicity can be noted by looking at the minima or at points where
the discrete curves ‘intersect’.
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Similar remarks concern the case presented in figures 1–3, where T ≈ 11.888 840 05
and μ9 = −0.0044, μ448 = 0.0035, μ457 = −0.000 93. The pattern on any of these figures
consists of nine discrete curves and is periodic with the period close to 457.

The behaviour described on the above examples is typical, and similar periodic phenomena
can be observed for other discretizations and for other choices of parameters except for very
small values of ε (e.g., ε � 0.01) when periodic oscillations are comparable or smaller than
the round-off error (then the oscillations become chaotic with a very small amplitude).

10. Numerical estimates of the amplitude and the period

All discretizations considered in this paper are characterized by very good stability of their
trajectories. Therefore, such quantities as an average period and (in the case of oscillating
motions) average amplitude are well defined for every discretization (provided that we consider
trajectories sufficiently far from the separatrix and ε is not too large, it is sufficient to assume
ε � 0.5).

10.1. Average amplitude

Relative errors of the average amplitude are presented in table 2 (for ε = 0.02 and ε = 0.5).
They were computed as differences between the numerical results and exact amplitudes given
in terms of elliptic functions. One can immediately see that in any case the best results
are given by both gradient schemes (and the worst ones are given by the Suris1 and Suris2
schemes). The relative error of the leap-frog and Suris’ methods practically does not depend
on p0. The accuracy of gradient methods increases for larger p0, both for ε = 0.02 and
ε = 0.5. For small ε (e.g., ε = 0.02) also projection schemes yield very small errors, like
10−8 or 10−9 (similar as gradient methods). However, for some p0 their accuracy is very high
(e.g., for p0 = 1.6) while for some other p0 is relatively worse (e.g., for p0 = 0.8).

The implicit midpoint rule is comparable to gradient methods but only for small p0 (e.g.,
p0 < 0.1). The leap-frog method, both Suris’ discretizations and (for p0 > 1.6) the implicit
midpoint rule yield much larger errors (by four orders of magnitude).

For greater ε (e.g., ε = 0.5) the differences between the studied methods are much smaller
(they differ at most by two orders of magnitude). Gradient methods are most accurate. The
implicit midpoint rule has similar accuracy for p0 < 1.2 while projection methods are not
much worse for p0 > 1.8. The leap-frog method and both Suris’ methods have larger relative
errors for any p0. We point out, however, that even those ‘large’ errors are not so bad (only
several percent) with the exception of p0 approaching 2 (when these discretizations fail to
reproduce properly even the qualitative behaviour).

Figure 13 illustrates the dependence of the average amplitude on ε for p0 = 1.8. Gradient
methods and (especially for ε < 0.3) projection methods are most accurate.

10.2. Average period

Relative errors for the average period are presented in table 3 and also in table 4 (in both cases
for ε = 0.02 and ε = 0.5). For p0 < 0.5 all discretizations except the modified discrete
gradient method have similar relative errors (the Suris1 scheme is the worst among them).
The modified discrete gradient methods are much better (for p0 ≈ 0 its error is smaller by
four orders of magnitude, at least), compare figure 12 (p0 = 0.1) and figure 14 (p0 = 0.02).
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Figure 12. Tavg ≡ T̄avg(0, 100, 200) as a function of ε for p0 = 0.1 (Tth = 6.287 117 82). White
squares: Suris1, black triangles: midpoint (Suris2 and discrete gradient methods yield practically
the same results), black diamonds: modified discrete gradient (very close to exact theoretical
values), white triangles: leap-frog, black circles: symmetric projection, white circles: standard
projection.

Table 2. Relative error of the averaged amplitude (A = Aavg(0, 50)). The table contains

log |A−Ath|
Ath

. We use traditional notation for common logarithms (e.g., 5̄.70 ≡ −5 + 0.70).

Modified Symmetric
p0 Leap-frog Suris1 Suris2 Gradient gradient Projection projection Midpoint

ε = 0.02
0.05 5̄.70 4̄.18 4̄.00 8̄.27 8̄.27 8̄.23 8̄.23 8̄.46
0.1 5̄.70 4̄.18 4̄.00 8̄.27 8̄.26 8̄.04 8̄.08 8̄.78
0.3 5̄.70 4̄.17 4̄.00 8̄.24 8̄.23 8̄.66 8̄.71 7̄.60
0.5 5̄.70 4̄.16 5̄.99 8̄.19 8̄.20 8̄.23 9̄.93 6̄.03
0.8 5̄.70 4̄.14 5̄.98 9̄.96 9̄.92 7̄.16 7̄.31 6̄.45
1.2 5̄.71 4̄.10 5̄.95 9̄.59 9̄.59 9̄.66 9̄.34 6̄.85
1.6 5̄.75 4̄.03 5̄.92 9̄.43 9̄.43 1̄0.73 8̄.12 5̄.18
1.8 5̄.83 4̄.01 5̄.93 9̄.61 9̄.60 9̄.66 9̄.61 5̄.40

ε = 0.5
0.05 2̄.40 2̄.93 2̄.75 3̄.80 3̄.84 2̄.50 2̄.50 3̄.80
0.1 2̄.41 2̄.93 2̄.75 3̄.80 3̄.83 2̄.48 2̄.50 3̄.80
0.3 2̄.41 2̄.93 2̄.75 3̄.78 3̄.82 2̄.41 2̄.44 3̄.80
0.5 2̄.42 2̄.92 2̄.74 3̄.76 3̄.79 2̄.16 2̄.33 3̄.80
0.8 2̄.45 2̄.91 2̄.74 3̄.66 3̄.70 3̄.95 3̄.74 3̄.79
1.2 2̄.49 2̄.87 2̄.73 3̄.39 3̄.43 2̄.53 2̄.29 3̄.82
1.6 2̄.58 2̄.81 2̄.72 4̄.26 4̄.16 3̄.97 2̄.25 3̄.95
1.8 2̄.68 2̄.79 2̄.74 3̄.09 3̄.12 3̄.75 3̄.76 2̄.13

Then, with increasing p0, all discretizations become to have similar accuracy with two very
interesting exceptions: the leap-frog and implicit midpoint schemes have a kind of ‘resonance
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Table 3. Relative error of the averaged period (T = T̄avg(0, 100, 200)). The table contains

log |T −Tth|
Tth

. We use traditional notation for common logarithms (e.g., 5̄.22 ≡ −5 + 0.22).

Modified Symmetric
p0 Leap-frog Suris1 Suris2 Gradient gradient Projection projection Midpoint

ε = 0.02
0.02 5̄.22 5̄.92 5̄.52 5̄.52 9̄.52 5̄.22 5̄.22 5̄.52
0.05 5̄.22 5̄.92 5̄.52 5̄.52 8̄.32 5̄.21 5̄.22 5̄.52
0.1 5̄.22 5̄.92 5̄.52 5̄.52 8̄.92 5̄.19 5̄.20 5̄.52
0.3 5̄.20 5̄.91 5̄.52 5̄.51 7̄.88 6̄.83 5̄.00 5̄.51
0.5 5̄.16 5̄.90 5̄.51 5̄.49 6̄.32 5̄.05 6̄.23 5̄.49
0.8 5̄.03 5̄.86 5̄.49 5̄.45 6̄.74 5̄.75 5̄.50 5̄.42
1.0 6̄.84 5̄.83 5̄.48 5̄.39 6̄.94 5̄.99 5̄.78 5̄.34
1.2 6̄.17 5̄.78 5̄.47 5̄.32 5̄.10 4̄.18 5̄.99 5̄.21
1.4 6̄.84 5̄.73 5̄.48 5̄.19 5̄.25 4̄.34 4̄.16 6̄.92
1.6 5̄.33 5̄.69 5̄.55 6̄.97 5̄.38 4̄.48 4̄.32 6̄.56
1.8 5̄.75 5̄.77 5̄.76 7̄.96 5̄.51 4̄.61 4̄.46 5̄.44
1.95 4̄.34 4̄.28 4̄.31 6̄.96 5̄.63 4̄.70 4̄.57 4̄.06
2.05 4̄.39 4̄.44 4̄.42 5̄.06 5̄.65 6̄.54 4̄.20 4̄.06
2.2 5̄.97 4̄.05 4̄.01 6̄.85 5̄.61 5̄.86 4̄.02 5̄.61
2.5 5̄.76 5̄.84 5̄.80 6̄.62 5̄.57 4̄.03 5̄.83 5̄.40
3 5̄.65 5̄.71 5̄.68 6̄.39 5̄.55 4̄.11 5̄.62 5̄.31
5 5̄.56 5̄.58 5̄.57 7̄.86 5̄.53 4̄.16 5̄.16 5̄.24

ε = 0.5
0.02 2̄.03 2̄.71 2̄.31 2̄.31 6̄.31 2̄.03 2̄.03 2̄.31
0.05 2̄.03 2̄.71 2̄.31 2̄.31 5̄.10 2̄.02 2̄.03 2̄.31
0.1 2̄.03 2̄.70 2̄.31 2̄.31 5̄.70 3̄.99 2̄.01 2̄.31
0.3 2̄.00 2̄.70 2̄.31 2̄.30 4̄.66 3̄.52 3̄.88 2̄.30

0.5 3̄.96 2̄.68 2̄.30 2̄.29 3̄.10 2̄.00 3̄.23 2̄.28
0.8 3̄.83 2̄.64 2̄.28 2̄.24 3̄.52 2̄.65 2̄.15 2̄.21
1 3̄.62 2̄.60 2̄.26 2̄.18 3̄.72 2̄.89 2̄.49 2̄.14
1.2 4̄.61 2̄.55 2̄.25 2̄.11 3̄.89 1̄.09 2̄.74 2̄.01
1.4 3̄.73 2̄.49 2̄.26 3̄.99 2̄.04 1̄.26 2̄.96 3̄.75
1.6 2̄.38 2̄.57 2̄.49 3̄.93 2̄.33 1̄.61 1̄.33 3̄.28
1.8 2̄.63 2̄.51 2̄.58 4̄.81 2̄.31 1̄.50 1̄.34 2̄.19
1.95 1̄.53 1̄.27 1̄.41 3̄.76 2̄.43 1̄.46 1̄.49 2̄.77
2.05 1̄.07 1̄.08 1̄.08 3̄.86 2̄.45 2̄.60 1̄.06 2̄.96
2.2 2̄.75 2̄.77 2̄.76 3̄.65 2̄.41 2̄.65 2̄.91 2̄.43
2.5 2̄.57 2̄.59 2̄.58 3̄.43 2̄.37 2̄.70 2̄.74 2̄.21
3 2̄.47 2̄.47 2̄.47 3̄.20 2̄.35 2̄.74 2̄.52 2̄.13
5 2̄.43 2̄.36 2̄.40 4̄.70 2̄.33 2̄.74 3̄.64 2̄.11

values’ for which their accuracy is much better than the accuracy of all other method.
Figure 15 shows how accurate is the leap-frog scheme for p0 = 1.21 and for practically
any ε. There are shown also next two discretizations: implicit midpoint and modified discrete
gradient, much worse (for this value of p0) than leap-frog (other discretizations are even
less accurate). The implicit midpoint scheme has an analogical ‘resonance value’, namely
p0 ≈ 1.6. It is worthwhile to point out that, surprisingly, projections applied to the leap-frog
method have a strong negative effect on the accuracy of the average period for 0.8 < p0 < 1.8,
especially for larger ε (e.g., ε = 0.5).
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Figure 13. Aavg ≡ Aavg(0, 50) as a function of ε for p0 = 1.8 (Ath = 2.239 539). White triangles:
leap-frog, black triangles: implicit midpoint, white squares: Suris1, black squares: Suris2, black
diamonds: modified discrete gradient (discrete gradient method yields practically the same values),
black circles: symmetric projection, white circles: standard projection (usually covered by black
circles).

If p0 approaches 2, then both gradient methods become more accurate than other methods
(only for small ε, the projection methods are better). For p0 very close to this limiting value the
accuracy of all methods decreases rapidly, and the leap-frog method and both Suris’ methods
produce rotating motions instead of oscillations; see table 4. The closest neighbourhood of
the separatrix (p0 = 2) is discussed in more detail below. Here we remark only that, for
p0 slightly greater than 2, the implicit midpoint method fails to reproduce rotations and has
wrong qualitative behaviour (i.e., oscillations).

In the case of rotating motions, the relative error of the average period is very similar
for all considered methods except the discrete gradient scheme which is better by one or two
orders of magnitude.

11. Interesting special cases

In this section, we briefly present several points which seem to be encouraging to further
studies.

11.1. Extrapolation ε → 0

For all studied discretizations we expect

lim
ε→0

T (ε, p0) = Tth(p0), lim
ε→0

A(ε, p0) = Ath(p0), (66)

where Tth(p0), Ath(p0) do not depend on the discretization and are equal to theoretical values
computed from the analytic formula (in terms of elliptic functions); compare figures 12
and 13.

Let us analyse quantitatively the case presented in figure 12 (the exact period is
Tth ≈ 6.287 117 83). Fitting third-order polynomials (very close to parabolas, in fact) to
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Table 4. Relative error of the averaged period in the neighbourhood of the separatrix
(T = T̄avg(0, 100, 200)). The table contains log |T −Tth|

Tth
. We use traditional notation for common

logarithms (e.g., 4̄.95 ≡ −4 + 0.95). The blank space with a dot means that the qualitative
behaviour of the discretization is wrong.

Modified Symmetric
p0 Leap-frog Suris1 Suris2 Gradient gradient Projection projection Midpoint

ε = 0.02
2 − 10−2 4̄.95 4̄.93 4̄.94 5̄.18 5̄.68 4̄.72 4̄.61 4̄.66
2 − 10−3 3̄.85 3̄.85 3̄.85 5̄.29 5̄.72 4̄.71 4̄.63 3̄.53
2 − 10−4 2̄.96 2̄.96 2̄.96 5̄.35 5̄.75 4̄.70 4̄.64 2̄.38
2 − 10−5 – – – 5̄.39 5̄.75 4̄.70 4̄.64 1̄.01
2 − 10−6 – – – 5̄.45 5̄.76 4̄.69 4̄.65 1̄.33
2 − 10−7 – – – 5̄.87 5̄.32 4̄.69 4̄.65 1̄.49
2 − 10−8 – – – 4̄.14 4̄.06 4̄.69 4̄.65 1̄.58
2 − 10−9 – – – 3̄.21 3̄.07 4̄.69 4̄.65 1̄.65
2 + 10−8 1̄.62 1̄.62 1̄.62 5̄.71 6̄.63 4̄.45 4̄.52 –
2 + 10−7 1̄.54 1̄.54 1̄.54 5̄.20 5̄.80 4̄.41 4̄.50 –
2 + 10−6 1̄.40 1̄.40 1̄.40 5̄.46 5̄.81 4̄.36 4̄.47 –
2 + 10−4 2̄.63 2̄.63 2̄.63 5̄.35 5̄.74 5̄.95 4̄.25 2̄.53
2 + 10−3 3̄.82 3̄.83 3̄.83 5̄.29 5̄.72 4̄.21 4̄.43 3̄.54
2 + 10−1 4̄.16 4̄.24 4̄.20 6̄.97 5̄.63 5̄.59 4̄.12 5̄.82

ε = 0.5
2 − 10−2 – – – 3̄.98 2̄.49 1̄.35 1̄.52 1̄.19
2 − 10−3 – – – 2̄.09 2̄.53 1̄.20 1̄.52 1̄.51
2 − 10−4 – – – 2̄.15 2̄.55 1̄.08 1̄.51 1̄.65
2 − 10−5 – – – 2̄.18 2̄.56 2̄.96 1̄.51 1̄.73
2 − 10−6 – – – 2̄.21 2̄.57 2̄.85 1̄.50 1̄.78
2 − 10−7 – – – 2̄.22 2̄.58 2̄.77 1̄.50 1̄.81
2 − 10−8 – – – 2̄.24 2̄.59 2̄.65 1̄.50 1̄.84
2 − 10−9 – – – 2̄.24 2̄.59 2̄.55 1̄.50 1̄.86
2 + 10−8 1̄.86 1̄.86 1̄.86 2̄.24 2̄.59 2̄.75 1̄.38 –
2 + 10−7 1̄.84 1̄.84 1̄.84 2̄.22 2̄.58 2̄.75 1̄.37 –
2 + 10−6 1̄.81 1̄.81 1̄.81 2̄.21 2̄.57 2̄.74 1̄.35 –
2 + 10−4 1̄.71 1̄.71 1̄.71 2̄.15 2̄.55 2̄.76 1̄.29 –
2 + 10−3 1̄.60 1̄.59 1̄.60 2̄.09 2̄.53 2̄.64 1̄.26 –
2 + 10−1 2̄.91 2̄.93 2̄.92 3̄.77 2̄.43 2̄.62 2̄.99 2̄.66

12 points (ε = 0.01, 0.02, . . . , 0.11, 0.12) we get

T = −0.038 67ε3 + 1.310 512ε2 − 0.000 1050ε + 6.287 118 75 (Suris1),

T = −0.009 09ε3 + 0.524 053ε2 − 0.000 0247ε + 6.287 118 05 (Suris2),

T = −0.004 75ε3 − 0.260 242ε2 − 0.000 0130ε + 6.287 117 94 (leap−frog).

(67)

The last terms estimate the exact period quite well. Taking 10−7 as a unit we compute their
absolute errors as 9.2, 2.2 and 0.9, respectively. They are comparable with the errors at
ε = 0.001 (given by 13.1, 5.2 and −2.6, respectively). The errors at ε = 0.01 (namely,
1307.2, 523.3 and 260.6) are higher by two orders of magnitude. The modified discrete
gradient scheme (with the δ-correction) beats all other discretizations: its error at ε = 0.01 is
only 1.3 (in the same units).
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Figure 14. Modified discrete gradient method. Relative error of the period as a function of ε for
p0 = 0.02, Tth = 6.283 342 395, T (ε) = Tavg(0, 30).

Figure 15. Relative error of the period as a function of ε for p0 = 1.21 (‘resonance value’ for the
leap-frog scheme), Tth = 7.018 661 31087, T (ε) = T̄avg(0, 100, 200). Black triangles: implicit
midpoint, white triangles; leap-frog, black diamonds: modified discrete gradient.

11.2. The neighbourhood of the separatrix

The separatrix is a border between oscillating and rotational motions. Table 4 presents the
values of the period for motions near the separatrix, i.e., p0 ≈ 2. This is certainly the range
of parameters, most difficult for accurate numerical simulations. The gradient schemes and
projection methods yield satisfying results, especially for small ε, and are much better than
all other methods. For rotating motions very close to the separatrix even projection methods
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Figure 16. ϕn for p0 = 2.000 001, ε = 0.1. White triangles: leap-frog, black diamonds: modified
discrete gradient, white diamonds: implicit midpoint. The period of the exact solution (continuous
line): Tth = 16.588 095 38, the average period given by the modified discrete gradient scheme:
T = 16.563 807 22.

Figure 17. ϕn for p0 = 2, ε = 0.2, the round-off error � = 10−16. White circles:
standard projection, black circles: symmetric projection, white diamonds: discrete gradient,
black diamonds: modified discrete gradient.

(especially the symmetric projection) become less accurate and only gradient methods yield
relatively good quantitative results; see table 4.

The other discretizations can produce wrong results even qualitatively. Namely, the
leap-frog and both Suris’ schemes begin to simulate rotating motions for some p0 < 2
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Figure 18. ϕn for p0 = 2, ε = 0.000 25, the round-off error � = 10−18. Black squares: Suris1,
black circles: symmetric projection, white circles: standard projection, black diamonds: modified
discrete gradient, white diamonds: discrete gradient. White squares (Suris2) and white triangles
(leap-frog) are almost covered by black squares.

(e.g., for p0 = 1.99 if ε = 0.5, and for p0 = 1.999 99 if ε = 0.02), while the implicit
midpoint rule produces oscillating motions for some p0 > 2 (e.g., for p0 = 2.000 001 if
ε = 0.02, and for p0 = 2.001 if ε = 0.5). For some initial data the leap-frog scheme
produces chaotic trajectories. Even in the case of good qualitative behaviour these methods
yield very large relative errors, especially for larger ε (for ε = 0.5 and |p0 − 2| � 0.001 the
leap-frog, implicit midpoint and both Suris’ schemes yield relative errors like 30%–70% and
more.

If p0 = 2, then (in the continuous case) we have the motion along the separatrix, i.e.,
ϕ → π for t → ∞. For larger ε (e.g., ε = 0.2) this behaviour is not reproduced by any
discretization. Interesting results are given by both gradient schemes; see figure 17 (ε = 0.2).
The standard gradient scheme produces oscillations, but after three periods one rotation is
performed. The modified discrete gradient scheme gives a strange motion: first oscillations
(two periods), then backward rotation (three periods), forward rotation and the return to
oscillations. This picture depends on ε and the round-off error chosen. In any case, for both
gradient schemes, we have a number of chaotic-looking switches between oscillations and
rotations in both directions. Qualitatively this behaviour may be considered as satisfying. It
reflects the fact that the equilibrium at ϕ = π is unstable. In the same time, the projective
discretizations (quite good at the qualitative description of motions near the separatrix) produce
relatively slow rotational motion (similarly as the standard leap-frog method and both Suris
schemes). However, for very small ε (e.g., ε � 0.000 25) the symmetric projection method
seems to have the proper qualitative behaviour and is much better than other considered
numerical schemes; see figure 18.

11.3. Advantages of the new method

The discrete gradient method with δ-correction turned out to be very efficient as far as the
numerical estimation of the period (for relatively small amplitudes) is concerned. The range
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of these ‘small’ amplitudes is quite large, up to ϕ ≈ π/4, which corresponds to p0 < 0.8.
Thus it contains also the cases which cannot be approximated by the linear oscillator. Even
for p0 ≈ 0.8 the new method is several times better than the best of other considered schemes,
and for smaller p0 it becomes better even by four orders of magnitude (e.g., for p0 = 0.02 the
errors of other discretizations are greater by the factor at least 0.5 × 104; see table 3).

Figure 12 (p0 = 0.1) shows how precise is the period given by our new method in
comparison to the period given by other numerical schemes. Similarly, figure 14 presents the
relative error for p0 = 0.02 and a large range of ε. We see that even for ε = 1 the relative
error is only 10−5! For small ε the error is 10−9 and less.

Our method works very well also for larger amplitudes, but for p0 larger than 1.4
the discrete gradient method is better, and the leap-frog scheme and implicit midpoint are
unbeatable around their ‘resonance’ amplitudes (p0 ≈ 1.2 and p0 ≈ 1.6, respectively). In
the case p0 > 2 the δ-correction has negative influence on the accuracy of the gradient
discretization (which is the best for rotating motions). However, the accuracy of the modified
discrete gradient method is on the same level as the accuracy of all other considered methods.

In the close neighbourhood of the separatrix the modified discrete gradient scheme behaves
similarly to the discrete gradient method and its qualitative behaviour is perfect. What is more,
also the quantitative results are very good (compare table 4). Figure 16 compares the behaviour
of our method with the leap-frog and implicit midpoint schemes for p0 = 2.000 001. The
points generated by the modified discrete gradient method practically coincide with the exact
solution (the relative error of the period is 0.59%), almost as good result as that given by the
discrete gradient scheme (the error is 0.25%). The leap-frog scheme produces good qualitative
behaviour but with the period two times smaller than the exact one. The implicit midpoint
scheme gives wrong qualitative result: oscillations instead of rotation.

12. Summary

All methods considered in this paper are characterized by very high stability of generated
periodic motions (provided that ε is not too large). They are much more stable than, for
instance, non-symplectic Runge–Kutta methods, even of high order. The average period is
practically constant for very long time, with the accuracy at least 10−7, (we checked even
several millions of periods). The period and the amplitude, as functions of time, perform
regular small oscillations (relatively larger for projection methods). The periodic character of
these oscillations turns out to be of a systematic origin, and we explained it considering rational
approximations (with possibly small denominators) of the real numbers T/ε and T/(2ε); see
section 9.

The main aim of this paper was the comparison of several numerical schemes; the details
are contained in sections 10 and 11. Here we point out some most typical features.

• Stability

– All considered methods (except, to some extent, projection methods) yield very stable
values of the period and the amplitude.

– Projection methods give periods and amplitudes which are stable after averaging,
but with large oscillations around the average (for small ε the oscillations decrease
considerably), compare figure 5.

• Accuracy of the period

Outside the separatrix neighbourhood (see table 3):

– all methods (with small exceptions, see the following items) have relative errors of
almost the same order (ε-dependent),
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– for small p0 the modified discrete gradient scheme is better by four orders of
magnitude than all other methods,

– for rotational motions the discrete gradient method is usually the best (especially for
large ε and p0), better up to two orders of magnitude.

In the neighbourhood of the separatrix (see table 4)

– both gradient methods give very good results,
– both projection methods give good results for p0 < 2,
– the best simulation of the motion along the separatrix is given by the symmetric

projection method (for very small ε); see figure 18,
– the leap-frog, implicit midpoint and both Suris’ methods yield wrong results.

• Accuracy of the amplitude

– For larger ε all methods have accuracy of the same order; see table 2. Gradient
methods are slightly better, while the leap-frog and both Suris’ schemes are worse
than other methods.

– For smaller ε we can divide the methods into two groups: less accurate (leap-frog and
both Suris methods) and more accurate (gradient methods and projection methods),
better by three orders of magnitude. The implicit midpoint rule belongs to the first
group for larger p0, and to the second group for small p0.

The standard leap-frog method, although non-integrable, is quite good when compared
with other, more sophisticated, discretizations. Its performance should be enhanced by the use
of projection methods which impose the conservation of the energy integral. The projections
work very well for small values of the time step, while for larger time steps they produce
relatively large fluctuations of the period and the amplitude. In any case the projections
produce much more accurate values of the average amplitude. The average period is similar to
the period given by the standard leap-frog method: a little bit better in the case of oscillating
motions, but slightly less accurate for rotating motions.

Surprising resonances occur for p0 ≈ 1.21 (for the leap-frog method) and p0 = 1.6 (for
the implicit midpoint rule). In the neighbourhood of these ‘resonance’ values these methods
have exclusively high accuracy of the estimated period (practically for any ε), much better
than all other methods. It would be interesting to explain this phenomenon.

Discretizations found by Suris [25] are very stable but produce relatively large errors as
compared to other numerical schemes. This is surprising because these methods are both
integrable and symplectic. Probably the large error (large deviation from the exact solution)
seems to be of a systematic origin. We plan to construct appropriate modifications of Suris’
discretizations in order to enhance their precision without destroying their stability.

The discrete gradient method is (for any ε and any p0) among the most accurate methods.
We proposed a modification of the discrete gradient method which proved to be quite
successful, especially when applied to oscillating motions. Our new method is extremely
efficient for small oscillations. The relative error of the period computed by this method is less
at least by four orders of magnitude in comparison with other considered numerical schemes.
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